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Abstract. Frankl’s conjecture states that in a family of sets closed by
union F such that F 6= {∅}, there is an element that belongs to at least
half of the sets of F . There are several partial results of this conjecture.
For example, it has been shown that families in which the smallest set
is of size 1 or 2, or families closed both by union and by intersection
are Frankl’s. In this article, by basing ourselves on an unseen recursive
definition of the family of sets closed by union, we will define a new class
of Frankl’s families. Subsequently, we will evaluate the size of this class
for the first 6 values of n. Finally we will show that this class does not
coincide with the already known Frankl’s classes.

Resumen. La conjetura de Frankl propone que en una familia de con-
juntos cerrados bajo unión F tal que F 6= {∅}, existe un elemento que
pertenece al menos a la mitad de los conjuntos de F . Hay varios resultados
parciales acerca de esta conjetura. Por ejemplo, se ha demostrado que las
familias en las que el conjunto más pequeño es de tamaño 1 o 2, o familias
cerradas bajo unión y la intersección son de Frankl. En este artículo,
basándonos en una definición recursiva nueva de la familia de conjuntos
cerrados bajo unión, se definirá una nueva clase de familias de Frankl.
Posteriormente se evaluará el tamaño de esta clase para los primeros 6
valores de n. Por último se demostrará que esta clase no coincide con las
clases de Frankl, ya conocidas.

Keywords: combinatorics, Frankl’s family, set, conjecture.

Palabras Clave: combinatoria, familia de Frankl, conjunto, conjetura.

? Doctor en Informática, Universidad de Clermont Ferrand, Francia. colomb@isima.fr
?? Doctor en Informática, Universidad de Evry, Francia. irlande@lirmm.fr

? ? ? Doctor en Informática, Universidad de Montpellier, Francia. raynaud@isima.fr
† Doctor en Informática, Universidad de Clermont Ferrand, Francia.

yoan.renaud@gmail.com



Revista Elementos - Número 1 - Junio de 2011

1. Introduction

Frankl’s conjecture [1], also called the conjecture of union-closed sets, is one
of the most well-known open combinatorial problems. In its present form, this
conjecture tells us that in a family of union-closed sets F such that F 6= {∅},
there is an element that belongs to at least half of the sets of F . In literature,
families verifying this property are often referred to as “Frankl’s families” and
the reference items, present in more than half of the sets, are called pivot. As of
this day, there are a large number of partial results for this conjecture. These
results are heterogeneous in nature.

One of the initial memorable results dates back to 1989 (cf. [2]), wherein the
authors showed that the families containing at least one singleton or a 2-element
set are Frankl’s families. Thus, a pivot is the item or one of the items of this
smaller set. However, this intuition that a smaller set could contain a pivot was
invalidated in the same article by giving an example of family whose smallest set
of size 3 did not contain the pivot.

When this conjecture was formulated, we find the hungarian mathematician
Peter Frankl who, in the 70s, stated this surprisingly simple intuition that an
intersection-closed family includes at least one item absent from half of the sets.
We will find a reference to these works in [3]. This initial version of the conjecture
henceforth took the name of “Frankl’s”. This “intersection” version is specifically
adapted to the lattice theory and has therefore be studied in this context ([4])
and quiet independently. One had to wait for the end of the century and works
of Abe ([5]) to formally link the two versions.

The lattice approach of this problem allowed determining several classes
for which the conjecture is true. Thus in 1992, Poonen determined in [6] that
the conjecture is verified for lattice L such that for each X belonging to L, the
interval [0, X] is complemented, given that this class is a superset of the geometric
lattice class. In 1998, Abe also showed ([7]) that Frankl’s conjecture is verified
for the modular lattices and extended this result to some cases of sub-modular
lattices [5,8]. It was also shown that any distributive lattice, corresponding
to an intersection-closed and union-closed family, verifies the conjecture. A
complementary approach to the one above was to study local specificities to
a family and to show how these specificities could allow reaching a conclusion
about the presence or absence of a pivot. Thus, still in [6], Poonen defined a
weight function for the sub-structures of a family and showed that if the weight
is sufficient then the family containing this structure is Frankl’s. This powerful
theorem relies on a major result in topology. More recently, in 2008, a simplified
version of this theorem was stated in [9] and used to show that any family on
the univers {0, ..., 10} is a Frankl’s family. Lastly, other partial and interesting
results are given in [10,11,12,13].

The approach of the conjecture proposed in this article is innovative and
relies on the recursive definition of the set of union-closed families. While this
decomposition result does not yet as of date allow us to demonstrate by structural
induction that the Frankl’s conjecture is true for any family, it nevertheless allows
us to define a very large class of families for which the Frankl’s intuition is true.
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We will specifically show that this new class is transversal to most of classes
already demonstrated to be Frankl’s.

The balance of this article is structured as follows. The second section broadly
reviews the recursive decomposition theorem of the set of union-closed families.
In the third section, we present our new class of families verifying the conjecture
and evaluating the size of this class for the initial values of n. Lastly, by giving
some counterexamples, we will show that our class does not coincide with some
specific classes known to be Frankl’s. The conclusion summarizes the work done
and the perspectives.

For clarity, we note elements by numbers (1, 2, 3, . . . ). Sets are denoted by
capital letters (A,B,C, . . . ). Families of sets are denoted by cursive letters (A,B,
C, . . . ). Finally, we note the sets of families of sets by black board letters (A,B,
C, . . . ).

2. Recursive decomposition of the set of union-closed
families

In the following we will noteMn the set of families on a universe Un = {0, ..., n−1},
closed by union and containing the empty set. A union-closed familyM on Un
can be decomposed into two parts. The part consisting of the sets ofM containing
the element n− 1 (denoted byMsup for the upper part), and the complementary
part (denoted by Minf for the lower part). The ∅ is duplicated to be present
in the two parts. Naturally,M =Msup ∪Minf . The familyMinf is clearly a
family of Mn−1. On the other hand, the familyMsup is a union-closed family
on Un with the peculiarity that all its sets contain the element n − 1 (we will
denote Msup as the set of union-closed families having this property).

Example 1. Let M be the family on U3, {∅, {0}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}},
we can decompose this family into two closed families:Minf = {∅, {0}, {0, 1}}
andMsup = {∅, {0, 2}, {1, 2}, {0, 1, 2}}.

We will say that a Mn−1 family is compatible with a Msup
n family if and only

if the union of the two families is closed by union. The example in the following
figure illustrates that for a fixed upper part, there are several compatible lower
parts.

In [14] we have shown that for a given upper family Msup, there exists a
unique maximal family such that all compatible families withMsup are the
union-closed families included in the maximal family.

By way of example, the maximal family associated toMsup (cf. figure 1) is
the family {∅, {0}, {1}, {0, 1}}. It can be verified that the two compatible families
given are in fact sub-families of this family.

The function f : Msup
n →Mn−1 defined below allows the characterization of

the maximal family of an union-closed family belonging to Msup
n . An efficient

algorithm to compute the function f has been given in [14].

Definition 1. One defines the function f : Msup
n → Mn−1 such that f(M) =

{X ∈ 2Un−1 | ∀M ∈M, M ∪X ∈M}.
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Fig. 1. On the left, a family of Msup
3 (all sets contain the element 2) to which are

associated two different union-closed families on U2. In the two cases the family obtained,
on the right, is an union-closed family.

By the way, f(M) represents the family of all compatible sets withM.
Noting ↓ X (for X ∈ Mn−1) the set of ideals of X in Mn−1, the set of

compatible families withM (forM in Msup
n ) coincides with ↓ Mmax, in other

words ↓ f(M).
In fact, the set Msup

n can be partitioned into two sets: the set Msup1
n of families

that do not contain the singleton {n − 1} and the set Msup2
n of families that

contain it. These two sets being in natural bijection with Mn−1. More formally,
functions g1 and g2 associate with each family M of Mn−1 a family of Msup1

n

(g1(M)) and a family of Msup2
n (g2(M)).

Definition 2. Let g1 and g2 be functions of Mn−1 →Msup
n such that:

• g1(M) = {M ∪ (n− 1) | M ∈M} ∪ ∅\{n− 1};
• g2(M) = {M ∪ (n− 1) | M ∈M} ∪ ∅.

See figure 2 for a graphic representation.

In fact the maximal family associated with a family of Msup2
n spelt g2(M) is

none other thanM. In other words for allM in Mn−1 we have f(g2(M)) =M.
For the convenience of the study of the maximal family of the families of

Msup1
n , we will denote h : Mn−1 →Mn−1 the function fog1. Thus, for allM of

Mn−1, h(M) = f(g1(M)).
From previous results and given definitions, Mn can be recursively defined as

follows:
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Fig. 2. On the left, a union-closed family of M3. At the bottom we find its image in
Msup1

4 by g1. All the sets of the family contain the object 3 and the singleton {3}
doesn’t belong to the family. At the top on the right, we find its image by g2 in Msup2

4
which contains the singleton {3}.

Theorem 1. Let Mn and Mn−1 be sets of union-closed families on Un and Un−1.
Then:

Mn = Mn−1 ∪
⋃

M∈Mn−1\∅

{g1(M)× ↓ h(M)} ∪
⋃

M∈Mn−1

{g2(M)× ↓ M}

For interpretation and representation see figure 3. From theorem 1 we can say
that there are three kinds of union-closed families on Un:

• the union-closed families on Un−1, the element n− 1 doesn’t appear in any
set of the family;
• the union-closed families which do not contain the singleton {n− 1}. These

families are under the form g1(M) ∪M′ withM andM′ in Mn−1 andM′
included in h(M);
• the union-closed families which contain the singleton {n− 1}. These families

are under the form g2(M) ∪M′ withM andM′ in Mn−1 andM′ included
inM;

3. About the Frankl’s conjecture

The strength of a recursive definition of an infinite set of objects is to allow
planning proofs by induction of properties on this set. Nevertheless, one must
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Fig. 3. On the left the order Mn−1 of union-closed families on Un−1. At the center, an
isomorphic order obtained by g1, on the right another copy obtained by g2. Their union
gives Msup

n . The existence ofM in Mn−1 leads to the existence of a large number of
union-closed families in Mn.

understand that the Frankl’s conjecture concerns the structure itself of the family,
rather than the set of whole numbers characterizing each set. The whole numbers
are interchangeable with each other. Thus the Frankl’s conjecture stays true up
to a permutation. In other words, if a family is Frankl’s, its image through any
permutation is in itself Frankl’s.

3.1. Element of symmetry

In our case, the principle of a demonstration by induction will fix the last whole
number to be considered. But it must be possible for this role to be taken
up by any one amongst them. For this reason, we will be interested in some
permutations that are translations. Thus we will call θ a translation on a finite
set Un = {0, ..., n− 1}, θ being a bijective function of 2Un in 2Un . By Tn we mean
the set of n translations (a, n− 1) for a in {0, ..., n− 1}. For a set E ⊆ Un and
θ ∈ Tn with θ = (a, n− 1) , θ(E) gives the image of E by θ defined by:

• θ(E) = E \ a ∪ n− 1 if a ∈ E and n− 1 6∈ E;
• θ(E) = E \ n− 1 ∪ a if a 6∈ E and n− 1 ∈ E;
• θ(E) = E in other cases.

For any family F ⊆ 2Un , by extension we will have θ(F) = {θ(E)|E ∈ F}.
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Example 2. Let a family F = {∅, {2}, {1, 2}, {0, 1, 2}} and the translation θ =
(0, 2), then θ(F) = {∅, {0}, {0, 1}, {0, 1, 2}}.

Proposition 1. Let F be a union-closed family on Un and θ ∈ Tn be a transla-
tion, if θ(F) is a Frankl’s family then F is Frankl’s too.

3.2. The families on Un containing a singleton

One of the first results pertaining to the Frankl’s conjecture was to note that
any union-closed family having a singleton was “naturally” a Frankl family. This
quite simple result of a conceptual viewpoint has the ability to class a large
number of closed families as Frankl’s family (cf. table 1). In fact, this result also
appears very clearly on reading the recursive definition. By the way, for any
closed family F containing a singleton, there is a translation θ on Un that sends
this singleton to {n− 1}. θ(F) will therefore be a family which will be written in
the form g2(M) ∪M′ withM andM′ in Mn−1 andM′ included inM. Since,
according to the definition of g2, the sets g2(M) andM have same cardinal, the
number of sets of θ(F) containing the item n− 1 (|g2(M)|) is greater than or
equal to the number of sets not containing this item (|M′|). θ(F) and thereby F
(cf. proposition 1) are therefore both Frankl’s families.

3.3. The families on Un not containing a singleton

According to the recursive definition, for any closed family F without singleton,
there existM andM′ in Mn−1 such that F is written as g1(M) ∪M′ withM′
included in h(M). Now h is an augmentation operator (M⊆ h(M)). Thus the
reasoning given further up for closed families containing the singleton {n− 1} is
not valid since the part of F for which the sets contain the item n− 1 (g1(M))
is potentially of cardinal lower than its part of sets not containing the item n− 1
(M′ ⊆ h(M)).

However, by restricting our analysis to the union-closed families F without
singleton arising out of a family M in Mn−1 such that h(M) = M, we are
assured that F is a Frankl family. This results in the following theorem:

Theorem 2. Let Cn be the class of union-closed families F on Un without
{n− 1} such that there exist 2 families M and M′ in Mn−1 with h(M) =M
and M′ ⊆ M and a translation θ in Tn such that θ(F) can be written as
g1(M) ∪M′ or g2(M) ∪M′. Then, families of Cn are Frankl’s families.

Sketch of proof: Let F in Cn, there exists θ in Tn such that θ(F) = g1(M)∪M′
(the second case with θ(F) equal to g2(M) ∪M′ has been previously treated).
The number of sets of θ(F) containing the element n− 1 is |g1(M)| = |M| from
definition of g1. The number of sets of θ(F) which do not contain n−1 is equal to
|M′| withM′ included in h(M). Since,M is a fixed point of h,M′ is included
inM and thus |M′| is inferior or equal to |M|. θ(F) as F are Frankl’s families.
See figure 4 for a graphic interpretation.
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Fig. 4. Placed at the top of the order, the closed familyM on U4 made up of 10 sets,
is a fixed point for h. Thus, any family F on U5, written g1(M) ∪M′ for any family
M′ given in this figure (thereby included in h(M) =M), is a Frankl family.

Using the experience acquired to count the number of Moore families for
n = 7 (cf. [14]) we have counted the number of fixed points by h for the initial
values of n as well as the size of the associated class. Results are presented in
table 1.

3.4. Study of some fixed points by h

Here, our intention is to show that the class Cn does not coincide with the most
classes known to be Frankl’s.

• Fixed point, neither modular nor distributive : The modular lattices like
the distributive ones find characteristics by absence of the prohibited sub-

16



A new generic class of Frankl’s families

n |Mn| |PFn| |Cn| |M1
n|

1 2 1
2 7 3 6 (85%) 5 (83%)
3 61 19 56 (91%) 49 (80%)
4 2 480 622 2296 (92%) 2063 (83%)
5 1 385 552 252 098 1 250 447 (91%) 1 141 766 (82%)
6 75 973 751 474 64 501 349 128 (85%) 59 424 724 974 (78%)

Table 1. The first column gives the size of Mn. The second column fixes the size of the
set of fixed points of Mn. In the third column we give the size of class Cn (we will note
that the calculations of |Cn| are based on the set of fixed points of Mn−1). Lastly, in
the last column we give the number of families of Mn containing at least one singleton
(noted for the occasion M1

n). For our knowledge these numbers were not known.

structure. The absence of N5, like the “cycle” without chord with 5 ver-
tices, characterizes the modulars and the joint absence of N5 and the M3
(diamond with 3 central vertices) characterizes the distributives. The fam-
ily M given in the previous figure contains 2 N5 with the sub-families
{∅, {0}, {0, 1}, {1, 2}, {0, 1, 2}}. The fixed pointM is therefore neither modu-
lar, nor distributive. Any family generated from this fixed point will neither
be modular, nor distributive.
• The presence of a N5 in the familyM allows us to affirm that the class Cn

does not coincide either with the class defined by extension of the relatively
complemented one of the lattices given in [6].
• We give with figure 5 a last example of fixed point for h which does not

contain singleton, nor sets of size two. The associated lattice is not modular,
nor relatively complemented.

In fact there is an argument that is used to affirm that the union-closed
families generated from fixed points do not have any specific property. Let B be
the Boolean lattice in Un−1, B is a fixed point by h. Moreover, since any closed
family in Un−1 is included in B, for anyM in Mn−1,M∪ g1(B) belongs to Cn.
Thus the union-closed familyM∪ g1(B) cannot be characterized by any property
other than those shared by the set of union-closed families of which the upper
part is boolean (for example the families whose upper part is Boolean contain as
the smallest set, 2-element sets).

4. Conclusion

In this article we defined a new class Cn of families for which the Frankl’s
conjecture is true. This class represents more than 85% of the union-closed
families for the initial values of n. However, we will note that the class Cn
contains the families having a singleton and that the number of these families is
itself large. The definition of Cn is based on the recursive definition of the set of
union-closed families and on an argument in particular that allows classifying
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Fig. 5. A fixed point by h on U8 which doesn’t contain singleton nor 2-element set. The
associated lattice to this family is not distributif, modular, or relatively complemented.
Last, it doesn’t contain a bloc as defined by Poonen in [6].

as “Frankl’s” families having a singleton. In some ways the class Cn contains
families F arising from a family of Mn−1 stable by the operator f(gi()) for i = 1
or i = 2 (up to a translation).

It seems that until now the study of the Frankl’s conjecture consisted of
determining the classes of families for which the conjecture was verified. We
think that with the help of the recursive definition, the approach could now be
different and should consist of understanding why the families that are not in
Cn are “Frankl’s”. While naturally supposing that the conjecture is true.
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